Chapter 2 Data Sources

2.1 NYPD Arrests Data

(Year to Date)

Source: https://data.cityofnewyork.us/Public-Safety/NYPD-Arrest-Data-Year-to-Date-/uip8-fykc

Description: This is a breakdown of every arrest effected in NYC by the NYPD during the current year. This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning. Each record represents an arrest effected in NYC by the NYPD and includes information about the type of crime, the location and time of enforcement. In addition, information related to suspect demographics is also included.

Data Provided By: New York Police Department

Total records: 140,413

Issues with the data:

  • This data only contains information for 2020. Having more historic data would help in carrying out a more successful time-wise analysis.
  • It would also be useful to have information about victims associated with these arrests.
  • Another useful feature could be county names, adding another level of location information. Drilling down to county level might result in interesting insights as well.

Type of variables: This can be seen below. There are 19 columns and their data types are noted below.

## tibble [140,413 x 19] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ARREST_KEY              : num [1:140413] 2.22e+08 2.22e+08 2.22e+08 2.22e+08 2.22e+08 ...
##  $ ARREST_DATE             : chr [1:140413] "12/25/2020" "12/22/2020" "12/21/2020" "12/10/2020" ...
##  $ PD_CD                   : num [1:140413] 105 397 105 105 729 153 153 263 105 153 ...
##  $ PD_DESC                 : chr [1:140413] "STRANGULATION 1ST" "ROBBERY,OPEN AREA UNCLASSIFIED" "STRANGULATION 1ST" "STRANGULATION 1ST" ...
##  $ KY_CD                   : num [1:140413] 106 105 106 106 113 104 104 114 106 104 ...
##  $ OFNS_DESC               : chr [1:140413] "FELONY ASSAULT" "ROBBERY" "FELONY ASSAULT" "FELONY ASSAULT" ...
##  $ LAW_CODE                : chr [1:140413] "PL 1211200" "PL 1601001" "PL 1211200" "PL 1211200" ...
##  $ LAW_CAT_CD              : chr [1:140413] "F" "F" "F" "F" ...
##  $ ARREST_BORO             : chr [1:140413] "B" "M" "Q" "Q" ...
##  $ ARREST_PRECINCT         : num [1:140413] 40 33 106 103 120 104 41 44 52 25 ...
##  $ JURISDICTION_CODE       : num [1:140413] 0 0 0 0 0 0 0 0 0 0 ...
##  $ AGE_GROUP               : chr [1:140413] "25-44" "18-24" "25-44" "18-24" ...
##  $ PERP_SEX                : chr [1:140413] "M" "M" "M" "M" ...
##  $ PERP_RACE               : chr [1:140413] "BLACK" "BLACK HISPANIC" "BLACK" "BLACK" ...
##  $ X_COORD_CD              : num [1:140413] 1007453 1001456 1028605 1039602 949767 ...
##  $ Y_COORD_CD              : num [1:140413] 233952 247485 187930 190480 170539 ...
##  $ Latitude                : num [1:140413] 40.8 40.8 40.7 40.7 40.6 ...
##  $ Longitude               : num [1:140413] -73.9 -73.9 -73.8 -73.8 -74.1 ...
##  $ New Georeferenced Column: chr [1:140413] "POINT (-73.91618413199996 40.80879780500004)" "POINT (-73.93781267199995 40.84595574000008)" "POINT (-73.84007936899997 40.68239828900005)" "POINT (-73.80040882999998 40.68933550400004)" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   ARREST_KEY = col_double(),
##   ..   ARREST_DATE = col_character(),
##   ..   PD_CD = col_double(),
##   ..   PD_DESC = col_character(),
##   ..   KY_CD = col_double(),
##   ..   OFNS_DESC = col_character(),
##   ..   LAW_CODE = col_character(),
##   ..   LAW_CAT_CD = col_character(),
##   ..   ARREST_BORO = col_character(),
##   ..   ARREST_PRECINCT = col_double(),
##   ..   JURISDICTION_CODE = col_double(),
##   ..   AGE_GROUP = col_character(),
##   ..   PERP_SEX = col_character(),
##   ..   PERP_RACE = col_character(),
##   ..   X_COORD_CD = col_double(),
##   ..   Y_COORD_CD = col_double(),
##   ..   Latitude = col_double(),
##   ..   Longitude = col_double(),
##   ..   `New Georeferenced Column` = col_character()
##   .. )

2.2 NYPD Hate Crimes

Source: https://data.cityofnewyork.us/Public-Safety/NYPD-Hate-Crimes/bqiq-cu78 Description: Dataset containing confirmed hate crime incidents in New York City. A hate crime is a traditional offense like murder, arson, or vandalism with an added element of bias. For the purposes of collecting statistics, the FBI has defined a hate crime as a “criminal offense against a person or property motivated in whole or in part by an offender’s bias against a race, religion, disability, sexual orientation, ethnicity, gender, or gender identity.”

Data Provided By: New York Police Department

Total records: 728

Issues with the data: County names are historical.

Type of variables:

## tibble [728 x 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Full Complaint ID            : num [1:728] 2.02e+14 2.02e+14 2.02e+14 2.02e+14 2.02e+14 ...
##  $ Complaint Year Number        : num [1:728] 2019 2019 2019 2019 2019 ...
##  $ Month Number                 : num [1:728] 2 3 3 3 5 5 5 6 7 8 ...
##  $ Record Create Date           : chr [1:728] "02/08/2019" "03/09/2019" "03/08/2019" "03/10/2019" ...
##  $ Complaint Precinct Code      : num [1:728] 46 48 48 48 42 42 42 40 49 47 ...
##  $ Patrol Borough Name          : chr [1:728] "PATROL BORO BRONX" "PATROL BORO BRONX" "PATROL BORO BRONX" "PATROL BORO BRONX" ...
##  $ County                       : chr [1:728] "BRONX" "BRONX" "BRONX" "BRONX" ...
##  $ Law Code Category Description: chr [1:728] "FELONY" "MISDEMEANOR" "MISDEMEANOR" "MISDEMEANOR" ...
##  $ Offense Description          : chr [1:728] "FELONY ASSAULT" "ASSAULT 3 & RELATED OFFENSES" "ASSAULT 3 & RELATED OFFENSES" "ASSAULT 3 & RELATED OFFENSES" ...
##  $ PD Code Description          : chr [1:728] "ASSAULT 2,1,UNCLASSIFIED" "ASSAULT 3" "ASSAULT 3" "ASSAULT 3" ...
##  $ Bias Motive Description      : chr [1:728] "ANTI-MALE HOMOSEXUAL(GAY)" "ANTI-WHITE" "ANTI-WHITE" "ANTI-WHITE" ...
##  $ Offense Category             : chr [1:728] "Sexual Orientation" "Race/Color" "Race/Color" "Race/Color" ...
##  $ Other Motive Description     : chr [1:728] NA NA NA NA ...
##  $ Arrest Date                  : chr [1:728] "02/08/2019" "03/09/2019" "03/09/2019" "03/09/2019" ...
##  $ Arrest Id                    : chr [1:728] "B19606200" "B19610772" "B19610788" "B19610788" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   `Full Complaint ID` = col_double(),
##   ..   `Complaint Year Number` = col_double(),
##   ..   `Month Number` = col_double(),
##   ..   `Record Create Date` = col_character(),
##   ..   `Complaint Precinct Code` = col_double(),
##   ..   `Patrol Borough Name` = col_character(),
##   ..   County = col_character(),
##   ..   `Law Code Category Description` = col_character(),
##   ..   `Offense Description` = col_character(),
##   ..   `PD Code Description` = col_character(),
##   ..   `Bias Motive Description` = col_character(),
##   ..   `Offense Category` = col_character(),
##   ..   `Other Motive Description` = col_character(),
##   ..   `Arrest Date` = col_character(),
##   ..   `Arrest Id` = col_character()
##   .. )

2.3 NYC Shooting Data

2.3.1 NYPD Shooting Incident Data

Source: https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date-/5ucz-vwe8

Description:

  • This is a breakdown of every shooting incident that occurred in NYC during the current calendar year. (2020) This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence.
  • In addition, information related to suspect and victim demographics is also included. For example, has information about the sex, Age, Race of the victim.

Data Provided By: New York Police Department

Total records: 1,942

Issues with the data: Contains only data for 2020. Searched for alternatives for more historical information.

Type of variables:

## tibble [1,942 x 19] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ INCIDENT_KEY            : num [1:1942] 2.21e+08 2.14e+08 2.17e+08 2.16e+08 2.22e+08 ...
##  $ OCCUR_DATE              : chr [1:1942] "12/07/2020" "06/06/2020" "08/30/2020" "08/05/2020" ...
##  $ OCCUR_TIME              : 'hms' num [1:1942] 05:50:00 21:00:00 01:39:00 20:01:00 ...
##   ..- attr(*, "units")= chr "secs"
##  $ BORO                    : chr [1:1942] "BRONX" "BRONX" "BROOKLYN" "QUEENS" ...
##  $ PRECINCT                : num [1:1942] 40 47 73 104 75 30 81 75 103 81 ...
##  $ JURISDICTION_CODE       : num [1:1942] 0 0 0 0 0 0 0 0 0 0 ...
##  $ LOCATION_DESC           : chr [1:1942] NA NA NA "PVT HOUSE" ...
##  $ STATISTICAL_MURDER_FLAG : logi [1:1942] FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ PERP_AGE_GROUP          : chr [1:1942] NA NA NA "18-24" ...
##  $ PERP_SEX                : chr [1:1942] NA NA NA "M" ...
##  $ PERP_RACE               : chr [1:1942] NA NA NA "UNKNOWN" ...
##  $ VIC_AGE_GROUP           : chr [1:1942] "18-24" "18-24" "45-64" "25-44" ...
##  $ VIC_SEX                 : chr [1:1942] "M" "M" "F" "F" ...
##  $ VIC_RACE                : chr [1:1942] "BLACK" "BLACK" "BLACK" "BLACK HISPANIC" ...
##  $ X_COORD_CD              : num [1:1942] 1020183 1009548 1025754 1051162 1008427 ...
##  $ Y_COORD_CD              : num [1:1942] 239283 258693 268697 155661 183518 ...
##  $ Latitude                : num [1:1942] 40.8 40.9 40.9 40.6 40.7 ...
##  $ Longitude               : num [1:1942] -73.9 -73.9 -73.8 -73.8 -73.9 ...
##  $ New Georeferenced Column: chr [1:1942] "POINT (-73.87017045 40.82338729100008)" "POINT (-73.90852293799998 40.87669883700005)" "POINT (-73.84985952299998 40.90409529500005)" "POINT (-73.75907037999998 40.59368532700007)" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   INCIDENT_KEY = col_double(),
##   ..   OCCUR_DATE = col_character(),
##   ..   OCCUR_TIME = col_time(format = ""),
##   ..   BORO = col_character(),
##   ..   PRECINCT = col_double(),
##   ..   JURISDICTION_CODE = col_double(),
##   ..   LOCATION_DESC = col_character(),
##   ..   STATISTICAL_MURDER_FLAG = col_logical(),
##   ..   PERP_AGE_GROUP = col_character(),
##   ..   PERP_SEX = col_character(),
##   ..   PERP_RACE = col_character(),
##   ..   VIC_AGE_GROUP = col_character(),
##   ..   VIC_SEX = col_character(),
##   ..   VIC_RACE = col_character(),
##   ..   X_COORD_CD = col_double(),
##   ..   Y_COORD_CD = col_double(),
##   ..   Latitude = col_double(),
##   ..   Longitude = col_double(),
##   ..   `New Georeferenced Column` = col_character()
##   .. )

2.3.2 NYPD Shooting Incident Historic Data

Source: https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic-/833y-fsy8

Description:

  • This is a breakdown of every shooting incident that occurred in NYC going back to 2006 through the end of the previous calendar year.(2019) This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence. In addition, information related to suspect and victim demographics is also included.

Data Provided By: New York Police Department

Total records: 21,626

Issues with the data: Contains shootings starting from 2006 but the information of other years is too much to display together.

Type of variables:

## tibble [21,626 x 19] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ INCIDENT_KEY           : num [1:21626] 2.02e+08 2.06e+08 1.93e+08 2.04e+08 2.01e+08 ...
##  $ OCCUR_DATE             : chr [1:21626] "08/23/2019" "11/27/2019" "02/02/2019" "10/24/2019" ...
##  $ OCCUR_TIME             : 'hms' num [1:21626] 22:10:00 15:54:00 19:40:00 00:52:00 ...
##   ..- attr(*, "units")= chr "secs"
##  $ BORO                   : chr [1:21626] "QUEENS" "BRONX" "MANHATTAN" "STATEN ISLAND" ...
##  $ PRECINCT               : num [1:21626] 103 40 23 121 46 73 81 67 114 69 ...
##  $ JURISDICTION_CODE      : num [1:21626] 0 0 0 0 0 0 0 0 2 0 ...
##  $ LOCATION_DESC          : chr [1:21626] NA NA NA "PVT HOUSE" ...
##  $ STATISTICAL_MURDER_FLAG: logi [1:21626] FALSE FALSE FALSE TRUE FALSE FALSE ...
##  $ PERP_AGE_GROUP         : chr [1:21626] NA "<18" "18-24" "25-44" ...
##  $ PERP_SEX               : chr [1:21626] NA "M" "M" "M" ...
##  $ PERP_RACE              : chr [1:21626] NA "BLACK" "WHITE HISPANIC" "BLACK" ...
##  $ VIC_AGE_GROUP          : chr [1:21626] "25-44" "25-44" "18-24" "25-44" ...
##  $ VIC_SEX                : chr [1:21626] "M" "F" "M" "F" ...
##  $ VIC_RACE               : chr [1:21626] "BLACK" "BLACK" "BLACK HISPANIC" "BLACK" ...
##  $ X_COORD_CD             : num [1:21626] 1037451 1006789 999347 938149 1008224 ...
##  $ Y_COORD_CD             : num [1:21626] 193561 237559 227795 171781 250621 ...
##  $ Latitude               : num [1:21626] 40.7 40.8 40.8 40.6 40.9 ...
##  $ Longitude              : num [1:21626] -73.8 -73.9 -73.9 -74.2 -73.9 ...
##  $ Lon_Lat                : chr [1:21626] "POINT (-73.80814071699996 40.697805308000056)" "POINT (-73.91857061799993 40.81869973000005)" "POINT (-73.94547965999999 40.791916091000076)" "POINT (-74.16610830199996 40.63806398200006)" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   INCIDENT_KEY = col_double(),
##   ..   OCCUR_DATE = col_character(),
##   ..   OCCUR_TIME = col_time(format = ""),
##   ..   BORO = col_character(),
##   ..   PRECINCT = col_double(),
##   ..   JURISDICTION_CODE = col_double(),
##   ..   LOCATION_DESC = col_character(),
##   ..   STATISTICAL_MURDER_FLAG = col_logical(),
##   ..   PERP_AGE_GROUP = col_character(),
##   ..   PERP_SEX = col_character(),
##   ..   PERP_RACE = col_character(),
##   ..   VIC_AGE_GROUP = col_character(),
##   ..   VIC_SEX = col_character(),
##   ..   VIC_RACE = col_character(),
##   ..   X_COORD_CD = col_number(),
##   ..   Y_COORD_CD = col_number(),
##   ..   Latitude = col_double(),
##   ..   Longitude = col_double(),
##   ..   Lon_Lat = col_character()
##   .. )

2.4 FBI Human Trafficking Data

Source: https://crime-data-explorer.fr.cloud.gov/downloads-and-docs

Description: The FBI began accepting data on human trafficking from states in January 2013. Human trafficking includes offenses related to commercial sex acts and involuntary servitude. Human Trafficking data available through the Crime Data Explorer include offenses and arrests recorded by state and local agencies that currently have the ability to report this crime to the national UCR Program. The UCR Program began collecting Human Trafficking data in 2013. The initial Human Trafficking publication was in 2013.

Data Provided By: Federal Bureau Of Investigation

Total records: 3,335

Issues with the data:

  • It would be useful to obtain more detailed information about perpetrators and involved criminal groups.
  • More specific time related information such as date and time may also be useful.

Type of variables: This can be seen below. There are 19 columns and their data types are noted below.

## tibble [3,335 x 19] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ DATA_YEAR             : num [1:3335] 2014 2014 2014 2014 2014 ...
##  $ ORI                   : chr [1:3335] "TNMPD0000" "TN0070300" "TXDPD0000" "TXDPD0000" ...
##  $ PUB_AGENCY_NAME       : chr [1:3335] "Memphis" "Caryville" "Dallas" "Dallas" ...
##  $ PUB_AGENCY_UNIT       : chr [1:3335] NA NA NA NA ...
##  $ AGENCY_TYPE_NAME      : chr [1:3335] "City" "City" "City" "City" ...
##  $ STATE_ABBR            : chr [1:3335] "TN" "TN" "TX" "TX" ...
##  $ STATE_NAME            : chr [1:3335] "Tennessee" "Tennessee" "Texas" "Texas" ...
##  $ DIVISION_NAME         : chr [1:3335] "East South Central" "East South Central" "West South Central" "West South Central" ...
##  $ COUNTY_NAME           : chr [1:3335] "SHELBY" "CAMPBELL" "DENTON; COLLIN; DALLAS" "DENTON; COLLIN; DALLAS" ...
##  $ REGION_NAME           : chr [1:3335] "South" "South" "South" "South" ...
##  $ POPULATION_GROUP_CODE : chr [1:3335] "1B" "7" "1A" "1A" ...
##  $ POPULATION_GROUP_DESC : chr [1:3335] "Cities from 500,000 thru 999,999" "Cities under 2,500" "Cities 1,000,000 or over" "Cities 1,000,000 or over" ...
##  $ OFFENSE_SUBCAT_ID     : num [1:3335] 81 81 81 82 82 82 81 81 81 82 ...
##  $ OFFENSE_NAME          : chr [1:3335] "Human Trafficking" "Human Trafficking" "Human Trafficking" "Human Trafficking" ...
##  $ OFFENSE_SUBCAT_NAME   : chr [1:3335] "Commercial Sex Acts" "Commercial Sex Acts" "Commercial Sex Acts" "Involuntary Servitude" ...
##  $ ACTUAL_COUNT          : num [1:3335] 1 1 5 2 1 1 1 1 2 5 ...
##  $ UNFOUNDED_COUNT       : num [1:3335] 0 0 0 0 0 0 0 0 0 0 ...
##  $ CLEARED_COUNT         : num [1:3335] 1 0 0 1 1 0 1 1 0 0 ...
##  $ JUVENILE_CLEARED_COUNT: num [1:3335] 0 0 0 1 0 0 0 0 0 0 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   DATA_YEAR = col_double(),
##   ..   ORI = col_character(),
##   ..   PUB_AGENCY_NAME = col_character(),
##   ..   PUB_AGENCY_UNIT = col_character(),
##   ..   AGENCY_TYPE_NAME = col_character(),
##   ..   STATE_ABBR = col_character(),
##   ..   STATE_NAME = col_character(),
##   ..   DIVISION_NAME = col_character(),
##   ..   COUNTY_NAME = col_character(),
##   ..   REGION_NAME = col_character(),
##   ..   POPULATION_GROUP_CODE = col_character(),
##   ..   POPULATION_GROUP_DESC = col_character(),
##   ..   OFFENSE_SUBCAT_ID = col_double(),
##   ..   OFFENSE_NAME = col_character(),
##   ..   OFFENSE_SUBCAT_NAME = col_character(),
##   ..   ACTUAL_COUNT = col_double(),
##   ..   UNFOUNDED_COUNT = col_double(),
##   ..   CLEARED_COUNT = col_double(),
##   ..   JUVENILE_CLEARED_COUNT = col_double()
##   .. )

Many other important datasets can be found on this website.

2.5 FBI Drug Arrests Data

This dataset contains monthly number of arrests for drug abuse violations reported by participating law enforcement agencies from 1995–2016. The arrests are by offense and broken down by age and sex or age and race.

(Reported Number of Drug Arrests)

Source: https://crime-data-explorer.fr.cloud.gov/downloads-and-docs

Data Provided By: FBI

Total records: 23

Issues with the data: The biggest issue with this dataset is it’s limited size. There is no state-wise information, or month-wise information, which would helped deepen our analysis scope.

Type of variables:

## tibble [23 x 16] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ id                   : num [1:23] 37 36 35 34 33 32 31 30 29 28 ...
##  $ year                 : num [1:23] 2016 2015 2014 2013 2012 ...
##  $ state_abbr           : logi [1:23] NA NA NA NA NA NA ...
##  $ agencies             : num [1:23] 13310 13404 12854 12397 12850 ...
##  $ population           : num [1:23] 2.65e+08 2.61e+08 2.56e+08 2.57e+08 2.55e+08 ...
##  $ total_arrests        : num [1:23] 1285186 1194910 1252378 1288009 1247720 ...
##  $ total_manufacture    : num [1:23] 187557 188123 205505 220903 214002 ...
##  $ opioid_manufacture   : num [1:23] 65790 64117 69623 70841 72417 ...
##  $ marijuana_manufacture: num [1:23] 51422 53387 63298 76840 70201 ...
##  $ synthetic_manufacture: num [1:23] 19571 21392 22733 23012 22441 ...
##  $ other_manufacture    : num [1:23] 49992 48531 49753 50182 48183 ...
##  $ total_possess        : num [1:23] 1057698 961035 1011167 1024667 990089 ...
##  $ opioid_possess       : num [1:23] 247351 227637 205330 193469 197784 ...
##  $ marijuana_possess    : num [1:23] 459506 428694 486085 532256 510807 ...
##  $ synthetic_possess    : num [1:23] 62994 59929 58462 54571 54843 ...
##  $ other_possess        : num [1:23] 264163 224528 260955 244381 224434 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   id = col_double(),
##   ..   year = col_double(),
##   ..   state_abbr = col_logical(),
##   ..   agencies = col_double(),
##   ..   population = col_double(),
##   ..   total_arrests = col_double(),
##   ..   total_manufacture = col_double(),
##   ..   opioid_manufacture = col_double(),
##   ..   marijuana_manufacture = col_double(),
##   ..   synthetic_manufacture = col_double(),
##   ..   other_manufacture = col_double(),
##   ..   total_possess = col_double(),
##   ..   opioid_possess = col_double(),
##   ..   marijuana_possess = col_double(),
##   ..   synthetic_possess = col_double(),
##   ..   other_possess = col_double()
##   .. )

2.6 NYC Park Crime Data

Source: https://www1.nyc.gov/site/nypd/stats/crime-statistics/park-crime-stats.page

Description: This is a dataset containing crimes in the parks of New York City. This dataset is gleaned from quarterly reports from the NYPD. The data transformation is detailed in the cleaning file.

Data Provided By: New York Police Department

Total records: 27696

Issues with the data: None

Type of variables:

## tibble [27,696 x 14] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ PARK                          : chr [1:27696] "PELHAM BAY PARK" "VAN CORTLANDT PARK" "ROCKAWAY BEACH AND BOARDWALK" "FRESHKILLS PARK" ...
##  $ BOROUGH                       : chr [1:27696] "BRONX" "BRONX" "QUEENS" "STATEN ISLAND" ...
##  $ SIZE (ACRES)                  : num [1:27696] 2772 1146 1073 913 898 ...
##  $ CATEGORY                      : chr [1:27696] "ONE ACRE OR LARGER" "ONE ACRE OR LARGER" "ONE ACRE OR LARGER" "ONE ACRE OR LARGER" ...
##  $ MURDER                        : num [1:27696] 0 0 0 0 0 0 0 0 0 0 ...
##  $ RAPE                          : num [1:27696] 0 0 0 0 0 0 0 0 0 0 ...
##  $ ROBBERY                       : num [1:27696] 0 0 1 0 0 0 0 0 0 0 ...
##  $ FELONY ASSAULT                : num [1:27696] 0 0 0 0 1 0 0 0 0 0 ...
##  $ BURGLARY                      : num [1:27696] 0 1 0 0 1 0 0 0 0 0 ...
##  $ GRAND LARCENY                 : num [1:27696] 0 0 0 0 1 0 0 0 0 0 ...
##  $ GRAND LARCENY OF MOTOR VEHICLE: num [1:27696] 0 0 0 0 1 0 0 0 0 0 ...
##  $ TOTAL                         : num [1:27696] 0 1 1 0 4 0 0 0 0 0 ...
##  $ YEAR                          : num [1:27696] 2015 2015 2015 2015 2015 ...
##  $ QUARTER                       : chr [1:27696] "q1" "q1" "q1" "q1" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   PARK = col_character(),
##   ..   BOROUGH = col_character(),
##   ..   `SIZE (ACRES)` = col_double(),
##   ..   CATEGORY = col_character(),
##   ..   MURDER = col_double(),
##   ..   RAPE = col_double(),
##   ..   ROBBERY = col_double(),
##   ..   `FELONY ASSAULT` = col_double(),
##   ..   BURGLARY = col_double(),
##   ..   `GRAND LARCENY` = col_double(),
##   ..   `GRAND LARCENY OF MOTOR VEHICLE` = col_double(),
##   ..   TOTAL = col_double(),
##   ..   YEAR = col_double(),
##   ..   QUARTER = col_character()
##   .. )